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Abstract The axiomatic thermodynamics of Giles is extended in such a way that direct 
applications to open systems are possible. The Helmholtz and other generalised Massieu 
function representations of thermodynamics are discussed without specialising to equili- 
brium. Quasi, ‘ordinary’, and absolute Helmholtz and generalised Massieu functions are 
introduced and shown to exist. ‘Uniqueness’ theorems for these quantities are established. 
A fundamental theorem is proved for each of the above representations of thermodynamics. 
This theorem provides quantitative conditions which are necessary and sufficient for one 
arbitrary state of a system A to be accessible from another arbitrary state of A in a natural 
process which involves not only A but also certain reservoirs. I t  is verified that, when the 
theory is specialised to equilibrium, the result is the well known partial Legendre transform 
‘picture’ of the Helmholtz and Massieu function representations. 

1. Introduction and summary 

In  this paper the axiomatic theory of thermodynamics developed by Giles (1964) is 
extended in such a way that direct applications to open systems are possible. Processes 
which can involve heat reservoirs and similar systems are investigated and this yields a 
set of alternative representations of thermodynamics. The theory is not restricted to 
equilibrium. The states which are allowed are quite general and are best thought of as 
corresponding to the mixed states, probability distributions, or density operators of 
statistical mechanics. The suitability of this notion of state for physical applications is 
thoroughly discussed by Giles. Several examples are studied (Giles 1964, pp 96-129). 
These include systems of variable volume and electric and magnetic systems. The 
possibility of constructing alternative formal representations of thermodynamics which 
are not restricted to equilibrium can be made plausible by reference to Landsberg 
(1961, pp 128-70). An interesting result here is table 24.2 (Landsberg 1961, p 162), 
which distinguishes the equilibrium theory as a special case. 

The existence of various alternative representations of equilibrium thermodynamics 
is well known. One can learn from standard texts (e.g., Callen 1961, Landsberg 1961) 
that, given the entropy representation, alternative representations can be obtained by 
partial Legendre transformation. In these alternative representations Massieu 
functions play a central role. These functions are often related in a simple way to more 
familiar free energies. Physically, the entropy representation is appropriate for closed 
systems and the Massieu function representations are appropriate for open systems in 
contact with certain reservoirs. To give an example, suppose that one starts with the 
entropy representation of equilibrium thermodynamics and ‘replaces’ the energy by the 
inverse temperature 1/ T via partial Legendre transformation. Then one effectively 
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110 R G Bowers 

obtains the Helmholtz representation-the Massieu function is -F/ T where F is the 
Helmholtz free energy. This representation is appropriate for a system in contact with a 
heat reservoir. 

In  the present work equilibrium is obtained as a special case and one of the principal 
results is the justification of the above picture on the basis of general considerations. 
Equilibrium thermodynamics, including Legendre transformation, is derived from the 
extended version of Giles’ theory and this gives the equilibrium theory a firm theoretical 
basis. 

The other main result is not restricted to equilibrium. Suppose that one writes a -+ b 
whenever the state b of a system of interest is accessible from the state a in a natural 
process which may involve certain reservoirs. I t  is established below that there exist a 
quasi Massieu function * and a set W of components of content with the property that 
the condition * ( a )  9 ( b )  and X ( a )  = X ( b )  for all X E -Wis necessary and sufficient for 
a -+ b. The quantity *-which is non-decreasing-and the quantities X which are 
conserved are real-valued functions on the state space. They are also additive in a sense 
described below. A close connection between quasi Massieu functions and their 
entropic analogues, quasi-entropies, is established. This underlies the connection via 
Legendre transform mentioned above which holds at equilibrium. 

The plan of the rest of the paper is as follows. In 9 2, Giles’ theory of the entropy 
representation is reviewed. In 9 3, processes which can involve heat reservoirs are 
‘investigated and the theory is extended to the Helmholtz representation. In 9 4, more 
general reservoirs and associated quasi Massieu function representations of ther- 
modynamics are discussed. 

2. The entropy representation 

The theory of the entropy representation presented by Giles (1964) provides not only 
firm foundations on which the proposed extension to other representations might be 
based but also a model which suggests how a large part of the new structure might be 
built. Consequently, this section is devoted to the task of establishing some of the 
central ideas of Giles’ theory. To save space proofs of theorems will be omitted. These 
can be found in Giles’ book. 

Giles presents thermodynamics as an axiomatic mathematical theory of states and 
processes together with certain ‘rules of interpretation’ which award a physical meaning 
to  each primitive term (and therefore, indirectly, to each derived term) of the theory. 
The primitive terms of the theory correspond to the notions ‘state’, ‘composition of 
states’ and ‘natural process’. States are denoted a ,  b, c, etc and the space of all 
(equilibrium and non-equilibrium) states is written Y and assumed to be non-empty. 
The composite sfate consisting of the arbitrary states a and b is written a + b. One writes 
a 4 b, where a and b are arbitrary states, i f  and only if  b is accessible from a in a natural 
process. 

The main difficulty is with the notion ‘state’ and, in particular, with the fact that i t  is 
not restricted to equilibrium situations. Giles’ rule of interpretation is, roughly speak- 
ing, ‘a state is a method of preparation’. Since non-equilibrium states can unquestion- 
ably be prepared, it follows from this rule that the theory should certainly include them. 
In this context the model provided by statistical mechanics proves instructive for a 
method of preparation clearly yields a mixed state which, in  general, is not at 
equilibrium. 
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The axioms should correspond-via the rules of interpretation for ‘etate’, ‘+’, and 
‘+’-to ‘simple’ assertions about physics. Thus Giles (p 30) starts with the following 
assertions which d o  have simple physical interpretations. 

Axiom. For any states a, b and c:  

a + b s Y  ( 2 . 1 ~ )  

a + b = b + a  (2 . lb)  

( a  + b ) + c  = a + (b  + c )  (2 . lc)  

a - + a  (2 . ld)  

a + b  and b + c . S a - + c  ( 2 . 1 ~ )  

a + c + b + c @ a - + b  (2.lf) 

a + b  a n d a + c = $ b + c  o r c + b .  (2 . lg)  

and 

This axiom has a number of interesting consequences for the theory of (formal) 
processes. Such processes are identified as ordered pairs of states. They can be added 
and any process has an inverse (Giles 1964, p 32). A process is possible if i t  is natural in 
one  direction or the other.  Giles shows (p 35) that axiom (2.1) implies that the set of all 
possible processes forms a subgroup of the group of all processes. This allows him (p 42) 
to define an irreversibility function and to show that, i f  such a function exists, it is unique 
up to a positive multiplier. Irreversibility functions are intimately connected with the 
crucial idea of entropy. It is useful to use the term ‘function of state’ to denote any 
real-valued function on Y and to refer to such functions F as additive if and only if 

(2.2) 

for all states a and b. This allows one (Giles 1964, p 57) to introduce a notion which is 
very nearly that of entropy as follows. 

Definition. A function o f  state S will be called a quasi-entropy i f  and only if it is 
additive and such that, for all states a and b, 

a -+ b and b + a 3 S ( a )  = S ( b )  

F ( a  + 6 )  = F ( a )  + F ( b )  

( 2 . 3 ~ )  

and 

a - + b  and b % a j S ( a ) < S ( b ) .  (2.3b) 

Giles also introduces (p 37) conserved quantities as follows. 

is additive and such that, for all states a and b, 
Definition. A function of state X will be called a componentof content i f  and only if it 

(2.4) 

The  connection between irreversibility functions and quasi-entropies then leads to the 
following ‘uniqueness’ theorem (Giles 1964, p 199). 

Theorem. If S is a quasi-entropy and S’ is a function of state, then S’ is also a 
quasi-entropy if and only if there exists a component of content X and a positive real 
number A such that 

a + b j X ( a )  = X ( b ) .  

S ’ = A S + X .  ( 2 . 5 )  
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This shows that there really is quite a lot of latitude in the choice of quasi-entropies and 
leads one to enquire whether the same is true of entropies. Giles (p 56) distinguishes 
these from quasi-entropies by the additional requirement that they vanish on a certain 
subset At of 9’. This subset consists of mechanical states and, by awarding it certain 
reasonable properties, Giles shows (p 57) that the entropy satisfies a version of (2.5) in  
which X must vanish on A. The set At is to some extent arbitrary and absolute entropies 
are distinguished from entropies by the device of using the ‘maximal’ AX. Giles shows (p 
69) that absolute entropies are unique up to a positive multiplier. (The proof of this 
depends on an extra axiom which is not really a central part of the theory.) 

The following axiom (Giles 1964, p 31)-which in some sense asserts the continuity 
of thermodynamic properties-allows one to make important progress with the theory. 

Axiom. Let ‘nu’ denote the sum of n states a .  Given any states a and b, i f  there exist 
states x and y such that for arbitrarily large positive integers n 

nu + x  + nb + y then a + b. (2.6) 

In the presence of this axiom, the following fundamental theorem of the entropy 
representation of thermodynamics can be proved (Giles 1964, p 59). 

Theorem. There exist a quasi-entropy S and a set -Waf components of content with 
the property that, for arbitrary states a and b, 

a + b @ S ( a ) s S ( b )  and X ( a )  = X ( b )  for all X E  LW. (2.7) 

Any set of components of content with the property ascribed to -Win (2.7) will be called 
sufficient. The theorem asserts that the set of all components of content is sufficient. I t  
is easy to prove that this set is a vector space and that any linearly independent subset of 
a sufficient set is also sufficient. In  practical cases there is a finite linearly independent 
set. The claim that theorem (2 .7 )  is fundamental needs to be justified. This is done 
thoroughly by Giles on page 59 of his book. 

Giles (pp 60-3) introduces the notion of ‘physical acceptability’ for functions of state 
via the following sequence of ideas. 

Definition. The state b will be said to be greater in content than the state a-so that 
a c b-if and only if a positive integer n and a state c exist such that 

nu + c + nb or nb + nu + c. (2.8) 

Definition. The magnitude of the state x relative to the state e is llxli where 

llxll= inf{n/m : m, n are positive integers and mx c ne}. (2.9) 

Axiom. There exists an internal state e. This has the property that, given any state x ,  

x c ne. (2.10) 

one can find a positive integer n such that 

To ensure that all states have finite magnitudes one restricts one’s choice of ‘e’ in (2.9) to 
internal states. The following property of boundedness is independent of this choice. 

Definition. An additive function of state F will be said to be bounded if and only if 
there exists a real number k such that, for all states x ,  

(2.11) 

The view taken is that functions of state are physically acceptable if and only if they are 
bounded. One can prove quite directly that the requirement of boundedness leaves the 
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forms of the uniqueness theorems for the quasi-entropy, entropy and absolute entropy 
unchanged. 

The real problem is to prove that theorem (2.7) remains true when only bounded 
functions of state are admitted. This requires a more sophisticated axiom of continuity 
than (2.6). The following axiom (Giles 1964, p 66)-which relegates (2.6) to the status 
of a theorem-proves suitable. 

Axiom. Given states a and b, if there exists a state c such that, for any positive 
number E, one can find positive integers m and n and states x and y with the property 
that m l n  < E ,  x c mc, y c mc and x +nu + y + nb, then 

a+b .  (2.12) 

In the presence of this axiom the fundamental theorem is true even if only bounded 
components of content and quasi-entropies are allowed. This is Giles’ central result. 
(Actually, the existence of a bounded absolute entropy is ensured in Giles’ theory.) 

Giles (pp 82-9) obtains some interesting results for specifically equilibrium ther- 
modynamics. These rely on the following idea. 

Definition. Any state a is an equilibrium state if and only if there is no state b such 
that 

a + b  and b 4  a.  (2.13) 

This definition has the consequence that a is an equilibrium state if and only if i t  is a 
state of maximum quasi-entropy S for the given values of a sufficient set of components 
of content. (Clearly, this condition is independent of the choice of S . )  The set of all 
bounded components of content forms a vector space. Suppose that (XI, .  . . , X,)  is a 
basis for this space so that-by previous results-it is a sufficient set. Let S be a fixed 
bounded quasi-entropy. Despite the abuse of notation, let S ( X , ,  . . . , X,,) denote the 
least upper bound of the values obtained by the function of state S for all states such that 
X , ( a )  = X I ,  . . . , Xn(a )  = X,,. Then it follows directly that a is an equilibrium state if 
and only if S ( a )  = S(Xl(a) ,  . . . , X,,(a)). Furthermore, the values S ( X l , .  . . , X,,)r give 
rise to an equilibrium quasi-entropy function S with the property that - S  is subadditive 
(Giles 1964, p 84). 

If one makes suitable assumptions about the equilibrium quasi-entropy S ,  
components of potential 4,- which are quantities conjugate to the X,-C~~I be intro- 
duced via 

dl = -aslax,. (2.14) 

In  particular, if the energy U appears amongst the XI, then the temperature T can be 
identified via the conjugate potential and one has 1 / T  = aS/aU. As Giles shows (pp 
84-9), the components of potential introduced in this way have the expected properties. 

3. The Helmholtz representation 

According to Giles, systems are identified via the set of all their states and a particular 
system is said to be involved in  a given process if and only if its initial and final states 
differ. The theory of the entropy representation given in 0 2 is particularly useful for 
closed systems and processes which involve just the system of interest. Attention will 
now be turned to the Helmholtz representation of thermodynamics and to the study of 
open systems and processes which involve both the system of interest and a heat 
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reservoir. To save space, proofs of many of the results obtained below will be omitted, 
sometimes without comment. 

The properties usually ascribed to heat reservoirs can be formalised as follows. 
Definition. Let U be a component of content called the energy. A subset 23 of SP 

will be said to be a heat reservoir if and only if the following apply. First, there exists a 
sufficient set V“ of components of content which contains U and has the property that 

X ( r )  = X ( r ’ )  for all r, r’ E 23 ( 3 . l a )  

and all X E “cr except U. Second, for all a ,  b E Y and r E 92, there exists r f  E 23 such that 

(3 .16 )  U ( a )  + U ( r )  = U ( b )  + U(r f ) .  

Third, for all r, r’ E 9 and for each absolute entropy S ,  

S(r) -S(r ’ )  = ( l / P ) ( U ( r ) -  U(r f ) ) ,  ( 3 . 1 ~ )  

where T a  is a positive quantity, called the reservoir temperature, which depends only 
on S and 9. Note that ( 3 . 1 ~ )  is consistent with the uniqueness theorem for the absolute 
entropy. 

The symbol ‘4.’ will be used to denote the relation ‘can go to in a natural process 
involving the heat reservoir 23’ in the following way. 

Definition. For arbitrary states a and b, 

a 4. b e a  + r l  + b + r2 for some r l ,  r 2 ~ 9 .  (3 .2)  

One needs to construct a theory of ‘-+’ which is similar to the theory of ‘+’ described in 
Q 2. The following powerful theorem allows one to do this. 

Replacementtheorem. Axioms (2 .1) ,  (2 .6) ,  (2.10) and (2.12) remain true when ‘+’ is 
replaced by ‘4’ in the statements of these axioms and in the definitions of any derived 
terms that they contain. 

In  order to establish the truth of the proposition obtained from one of the axioms by 
the replacement procedure one needs to use the axiom itself and axioms preceding i t .  
Definitions (3.1) and (3 .2)  are also needed. The following is one consequence of (3 .1)  
which is particularly useful. 

Lemma. For any states a and b and any states r l ,  r2,  r3, r4 E 92, 

a + r l  + r z+  b +r3  + r 4 j a  + r +  b +r’ 

e a 4 . b .  (3 .3)  
I t  follows from the replacement theorem that, since ‘+’ plays the same role here as it  

does in § 2, all the consequences of (2.1), (2 .6) ,  (2.10) and (2.12) also remain true when 
‘+’ is replaced by ‘4’. This means that one has a ‘ready-made’ theory of ‘4’. To 
generate this new theory from the one given in § 2 ,  all that is necessary is to insert the 
adjective ‘open’ or the phrase ‘open analogue of’ in  definitions in  which ‘+’ is replaced 
by ‘4’. (One speaks, for example, of ‘open components of content’.) After this one has 
only to use the new names of the derived terms in the theorems. In this way one obtains, 
from (2.5),  the following uniqueness theorem for the open analogue of the quasi- 
entropy. This additive function of state will be called a 4uasiMassieufunction in  order 
to allow contact with traditional usages to be easily made. 

Theorem. If V, is a quasi Massieu function and 9‘ is a function of state, then V,’ is also 
a quasi Massieu function if and only if there exist an open component of content and a 

for some r, r’ E 92 
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positive real number A such that 

q’ = A q + X .  (3.4) 

The above procedure applied to (2.7) yields the following form of the fundamental 
theorem of the Helmholtz representation. 

Theorem. There exist a quasi Massieu function \I’ and a set “W of open components 
of content with the property that, for arbitrary states a and b, 

a 4 b  a Y ( a )  s V ( b )  and X ( a )  = X ( b )  for all X E -W. (3.5) 

The remarks about sufficient sets -W remain much as before. In practice one expects a 
finite linearly independent sufficient set. The sequence of results obtained from 
(2.8)-(2.12) by replacement allows one to conclude that the fundamental theorem (3.5) 
remains true when only physically acceptable functions of state are admitted. In 
addition, one can conclude that this requirement leaves the form of the uniqueness 
theorem (3.4) unchanged. As a matter of notational convenience in investigations of 
physical acceptability it is useful to use C= and 11 / l o  respectively to denote the open 
analogues of c and I (  /I. 

The entropy and Helmholtz representations are connected in ways which are not 
contained in the replacement theorem. I t  is, for example, easy to prove the following 
results. 

Theorem. The open components of content constitute a subspace of the space of all 
components of content. 

Theorem. The function of state ‘4J is a quasi Massieu function if and only if i t  is such 
that 

q = S - U / T a  (3.6) 

where S is an allowable quasi-entropy and U is the energy. Allowable quasi-entropies 
are of the form Sa + X where Sa is an absolute entropy-with corresponding reservoir 
temperature Tz-and X is an open component of content. In practice, one expects 
that the space of all components of content will consist of the direct sum of the subspace 
generated by the energy and the space of all open components of content. One can 
prove directly from (3.1) and (3.2) that V - { U }  is a sufficient set of open components of 
content. The existence, first, of a set V which satisfies (3.1) and which is a basis for the 
space of all components of content and, second, of an open natural process in which U 
changes is sufficient to ensure the direct sum property. As far as boundedness is 
concerned, the above results remain true when the obvious modifications are made. 
Furthermore, one can prove that ‘boundedness’ in the sense implied by the replacement 
procedure ensures ‘boundedness’ in the sense of § 2. One may continue to use the 
boundedness of § 2 as a criterion of physical acceptability. 

Two consequences of (3.6) are worthy of mention. First, this equation suggests that 
a quasi Massieu function should be called a Massieu function or an absolute Massieu 
function whenever the corresponding quasi-entropy is an entropy or absolute entropy, 
respectively. Second, i t  allows one to rewrite the theory of the present section using not 
the quasi Massieu function q, but the Helmholtz free energy 

F = - T 2 q  (3.7) 
where T z  is the reservoir temperature of (3.6). 

Attention can now be concentrated on equilibrium thermodynamics. Let r be a heat 
reservoir state. Using the sufficiency of V - { U }  and other previous results, one can 
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show that a + r  is an equilibrium state if and only if the state a maximises any quasi 
Massieu function for the given values of any sufficient set of open components of 
content. (This condition is independent of the choices one makes.) The above holds for 
any reservoir state r so that one talks of states in equilibrium with heat reservoirs. It 
follows that the state a is in equilibrium with the given heat reservoir if and only if there 
is no state b such that a-* b while b + a .  When one compares this result with (2.13), 
one sees that it extends the scope of the replacement procedure. In this way, given any 
basis of the space of all open components of content and any quasi Massieu function, 
one can-by analogy with § 2-construct an equilibrium quasi Massieu function whose 
negative is subadditive. 

Equation (3.6) can lead to an important connection between equilibrium functions. 
Let (X2 , .  . . , X , )  be a basis for the space of bounded open components of content. 
Despite the abuse of notation, let 'P denote the equilibrium function corresponding to 
the quasi Massieu function 'P= S -  U/T" o f  (3.6). Then 

'P(T", X 2 , .  . . , X,)=SUP (S (U) -  U ( a ) / T " )  
a e d  

(3.8) 

where d = { a  : X 2 ( a )  = X 2 ,  . . . , X , ( a )  = X ,  and a E Y} and the dependence on the 
temperature has been emphasised. I t  follows directly that 

'P(Ta, X 2 , .  . . , X,) = sup (S (U ,  X 2 , .  . . , X , ) -  U / T a )  (3.9) 
UEis 

where the supremum is over all values of U and S is the equilibrium quasi-entropy of 
§ 2. (In practical cases, U extends (X2 ,  . . . , X , )  to a basis for the space of all bounded 
components of content.) 

Given differentiability, (3.9) is equivalent to partial Legendre transform. If one uses 
the definition aS/aU = 1 / T  of the inverse temperature, one finds that a value of U 
which maximises S(U, X 2 , .  . . , X , ) -  U/T" satisfies 1 / T  = 1/T".  Thus a state in 
equilibrium with a heat reservoir is at the temperature of the reservoir and T can be 
used in place of T". Suppose that one has a function whose values U (  T, X 2 ,  . . . , X , )  
maximise S (  U, X2, . . . , X , )  - U/ T for varying U with T and X Z ,  . . . , X, fixed. Then 

'€'(T,X2,. . . , X , ) = S ( U ( T , X 2 , .  . . , X f l ) , X 2 , .  . . , X , ) - U ( T , X z , .  . . , X , ) / T ,  (3.10) 

and it follows from the chain rule that 

au/axi = -4, i ~ ( 2 , .  . . , n }  (3.11) 

while 

a'P/a( 1/ T )  = -U. (3.12) 

These are standard results and the discussion of Legendre transform is complete. 

4. Generalised Massieu function representations 

The above theory can easily be generalised in such a way as to make it apply to processes 
which involve both the system of interest and a system which acts as a reservoir for 
several linearly independent components of content (or for a single component of 
content other than the energy). This yields a set of alternative representations of 
thermodynamics. 
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First, one needs to generalise the concept of a heat reservoir. 
Definition. Let %be  a subspace of the space of all components of content. A subset 

92 of Y will be said to be an %reservoir if and only if the following apply. First, there 
exists a sufficient set V of components of content which contains % in its span and which 
has the property that 

X ( r )  = X ( r ' )  for all r, r' E 3 ( 4 . 1 ~ )  

and all X in 7'" which are not in 2. Second, for all a,  b E Y and r E 9, given any X E %, 
one can find r' E 9 such that 

X ( a ) + X ( r ) = X ( b ) + X ( r ' ) .  (4 . lb )  

Third, for all r, r' E 9 and for each absolute entropy S,  
m 

S(r ) -S ( r ' )  = 1 ~ ? ( X [ ( r ) - x , ( r ' ) )  
[ = I  

( 4 . 1 ~ )  

where the F? are constants for fixed 9 and S and a fixed basis (XI, . . . , X,) of 2. The 
form of (4. IC) is consistent with the uniqueness theorem for the absolute entropy and 
with transformations induced by a change of basis in 2. 

Clearly, one needs to generalise '4'. All that is necessary is to adopt (3.2) but allow 
9 to be an 29 reservoir. The replacement theorem then remains true and all its 
consequences can be taken over to the present case. The existence of genetalised quasi 
Massieu functions satisfying the uniqueness theorem (3.4) is ensured. The existence of a 
sufficient set of generalised open components of content is also guaranteed. The 
fundamental theorem (3.5) thus remains true. 

The nature of quasi Massieu functions and open components of content can differ 
from case to case. Any result of § 3 which mentions the energy U explicitly needs 
modification. Theorem (3.6) becomes the following. 

Theorem. The function of state 9 is a quasi Massieu function if and only i f  

where S is an allowable quasi-entropy and ( X I ,  . . . , X,) is a basis for 2. Allowable 
quasi-entropies are of the form S,+X where Sa is an absolute entropy-corresponding 
via the X i  to the constants F? of (4.lc)-and X is an open component of content. 
Again one expects that the space of all components of content will be the direct sum of 
2 and the space of all open components of content. One can prove directly that 
V -  V n 2  is a sufficient set of open components of content. Conditions which ensure 
the direct sum property are easy to obtain. They are obviously parallels of those given 
in § 3. Theorem (4.2) allows some representations of thermodynamics to be expressed 
in terms of the 'quasi free energy' F = - T B 9 ,  where TB is a reservoir temperature, as 
well as the quasi Massieu function P. 

The discussion of boundedness and some aspects of the discussion of equilibrium 
differ little from the specific case of 9 3. However, the last two paragraphs of 9 3 do need 
modification. Let (Xm+l ,  . . . , X,)  be a basis for the space of bounded open components 
of content. The appropriate generalisation of (3.8) is 

m 

(4.3) 
W F ? ,  . . . , F,, R X m + l , .  . . , X,,) =sup ( S ( a ) -  1 F?Xi(u))  

aesP i = l  
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where d = { a  :Xm,.l(u) = Xm+l, . . . , X,,(n) = X,, and n E 9’) and the dependence on the 
constants FF of (4.1) has been emphasised. I t  follows directly that 

(4.4) q ( F ? ,  . . . , F,, XmT1,. . . , X,,)  = 

where the supremum is over all values of X1,. . . , X, and S is the equilibrium 
quasi-entropy of 0 2. (In practical cases (Xl, . . . , X,) extends (Xmtl, . . . , X,,) to a 
basis for the space of all bounded components of content.) Given differentiability, (4.4) 
again implies Legendre transform. The appropriate generalisations of (3.1 1) and (3.12) 
can easily be seen to be 

m w sup ( S ( X ,  . . . , X n ) -  1 FwXi) 
( X , .  , . X , ) € P  i = l  

aqlax, = -4, 

aVrlad, = x, 
i ~ { m  + 1 , .  . . , 
i G ( 1 , .  . . , m }  

n >  
(4.5) 

where 4j = -aS/dX, is the component of potential of § 2. (To prove these results one 
needs the variables F1,. . . F,, Xmtl,. . . , X,, to be independent. If m = n, one may 
quote the Gibbs-Duhem relation which expresses the dependence of the variables 
F1,. . . 9 Fm.1 
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